A Compilation of hard limits
This list consists of the limits that I found most challenging.
- $$\lim_{n \to \infty} \left( \frac{n!}{n^n} \right) ^\frac 1n$$
- $$\lim_{x \to 0} \left( \frac{1}{\ln(x + \sqrt{x^2+1})} - \frac 1{\ln(x+1)} \right)$$
- $$\lim_{n \to \infty} \frac{n + n^2 + n^3 + … + n^n}{1^n + 2^n + 3^n + … + n^n}$$
- $$\lim_{n \to \infty} \left( \frac{n^n(x+n)\left(x+\frac n2\right)…\left(x+\frac nn\right)}{n!(x^2+n^2)\left(x^2+\frac {n^2}{4}\right)…\left( x^2 + \frac{n^2}{n^2}\right)}\right)^{\frac x n}$$
- $$\lim_{x \to 0} \left( 1^{\sin^{-2}x} + 2^{\sin^{-2}x} + … + n^{\sin^{-2}x}\right)^{\sin^2 x}$$
- $$\lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n+1]{(n+1)!}-\sqrt[\leftroot{-2}\uproot{2}n]{n!}$$
- $$\lim_{n \to \infty} \left( e - \left( 1 + \frac1n \right) ^n \right) ^\frac 1n$$
- $$\lim_{n \to \infty} \underbrace{\sin(\sin(\sin(…\sin(a)..)))}_\text{n times}$$
- $$\lim_{n \to \infty} \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{ … 1 + (n-1)\sqrt{1+n}}}}}$$
- $$\lim_{x \to \infty} \binom{x}{n} \left(\frac{a}{x}\right)^n \left( 1 - \frac{a}{x}\right)^{x-n}$$
- $$\lim_{n \to \infty} \ \frac{2^{n+1}}{n+1} \ \left| 3\sum_{k=1}^n (-1)^k\frac{k}{2^k} + \frac 23\right|$$
Answers:
Mouseover/tap to reveal
- $e$
- $-\frac 12$
- $1 - \frac 1e$
- $\exp\left( \int_0^x \ln \left( \frac{t+1}{t^2+1}\right)dt\right)$ (from JEE(A) 2016)
- $n$
- $e^{-1}$
- $1$
- $0$
- $3$ (Ramanujan found this one :)
- $\frac{a^n e^a}{n!}$
- $2$