# Testing

Posted on Mon 13 July 2020 in Posts

This is a scratchpad of sorts to test the capabilities of Pelican.

Let's start with an Image: Big buck bunny looking real handsome ;) Some tweaks have to be made to expand the image on click but this is ok for now..

# Echo

## Echo

### Echo

#### Echo

##### Echo
###### Echo

looking good, although I will personally never use anything lower than H4 (if you're nesting these many headings, you should just go write a book).

Lists looking fine as well:

• This
• is
• an
• unordered
• list

Ordered list:

1. Law
2. And
3. Order

Tables (top 10 chess players as of 19th July 2020):

No Name Country Rating
1 Magnus Carlsen NOR 2863
2 Fabiano Caruana USA 2835
3 Liren Ding CHN 2791
4 Ian Nepomniachtchi RUS 2784
5 Maxime Vachier-Lagrave FRA 2778
6 Alexander Grischuk RUS 2777
7 Levon Aronian ARM 2773
8 Wesley So USA 2770
10 Anish Giri NED 2764

Some MathJax, and a quote/hyperlink example (this is taken from Math SE):

let $x = t^{12} \implies dx = 12t^{11} dt$ $$A = \int \left( \frac{1}{t^4+t^3} + \frac{\ln(1+t^2)}{t^4 + t^6} \right) 12t^{11}dt \ = \underbrace{\int \frac{12t^8}{t+1}dt}_{A_1} + \underbrace{\int \frac{\ln(1+t^2)}{1+t^2}12t^7dt}_{A_2}$$ $A_1$ can be written as: $$A_1 = 12 \int \frac{x^8 - 1 + 1}{x+1} dx= 12 \int (x^4+1)(x^2+1)(x-1) + \frac{1}{x+1}dx$$ Which is doable. For $A_2$, make the substitution $1+t^2 = k \implies 2tdt = dk$ $$A_2 = 6 \int \frac{\ln(k)}{k}(k-1)^3dk$$ This can be integrated by parts as follows: $$A_2 = 6\left( \ln(k) \cdot \left( \frac{k^3}{3} - \frac{3k^2}{2} + 3k - \ln(k)\right) + \int \frac 1k \cdot \left( \frac{k^3}{3} - \frac{3k^2}{2} + 3k - \ln(k)\right) dk\right)$$ $A_2$ is also now doable. Add $A_1$ and $A_2$ to get $A$ and substitute back till you get $A = f(x) + c$.

Here's an example of some embedded HTML: (using the chess.com chess player to show one of my games)

Here's some code to generate a minefield (Taken from the Mines repo):

int height = prefs.getRows();
int width = prefs.getCols();
int numMines = prefs.getMines();

for( int i=0; i<numMines; i++ ) {
boolean put = false;
while( !put ) {
int xLoc = (int)(Math.random()*width);
int yLoc = (int)(Math.random()*height);
int yDiff = Math.abs( yLoc-y );
int xDiff = Math.abs( xLoc-x );
boolean putable = (yDiff > 0) && (xDiff > 0);

if( !(buttons[yLoc][xLoc].hasMine()) && putable ) {
put = true;
buttons[yLoc][xLoc].setMine( true );
}
}
}

for( int i=0; i<height; i++ ) {
for( int j=0; j<width; j++ ) {
if( buttons[i][j].hasMine() ) {